Pythagoras

Name:	Class:	Date:		
		Mark	$/ 12$	

1) Find the missing length in the triangle pictured below

2) Find the missing length in the triangle pictured below

3) A right-angled triangle has two shorts side of length 12 cm and 16 cm . Find the length of the hypotenuse.
4) A right-angled triangle has a hypotenuse of length 117 cm and one short side of length 45 cm . Find the length of the other short side.
5) Find the missing length in the triangle pictured below, giving your answer to 3 significant figures

6) Find the missing length in the triangle pictured below, giving your answer to 3 significant figures

7) A right-angled triangle has short sides of length 6 cm and 8 cm . Find the length of the hypotenuse, giving your answer to 3 significant figures.
8) A right-angled triangle has a hypotenuse of length 18 cm and a short side of length 11 cm . Find the length of the other short side, giving your answer to 3 significant figures.
9) The base of a ladder is 7 metres from a wall. The height of the wall is 9 metres.

What is the minimum height the ladder must be to reach the top of the wall? (give your answer to 3 significant figures)
10) Find the distance between the coordinates $(-2,1)$ and $(4,-5)$, giving your answer to 3 significant figures
11) Find the length of the line segment shown below, giving your answer to 3 significant figures

12) The diagram shows a field with length 600 metres and width 400 metres.

Find the diagonal distance across the field.
Give your answer to the nearest metre.

Solutions for the assessment Pythagoras

1) $x=100 \mathrm{~cm}$
2) $x=120 \mathrm{~cm}$
3) $x=20 \mathrm{~cm}$
4) $x=108 \mathrm{~cm}$
5) $x=15.6 \mathrm{~cm}$
6) $x=11.0 \mathrm{~cm}$
7) $x=10 \mathrm{~cm}$
8) $x=14.2 \mathrm{~cm}$
9) Height $=11.4 \mathrm{~cm}$
10)

Distance $=\sqrt{6^{2}+6^{2}}$
Distance $=\sqrt{72}$
Distance $=8.49^{\circ}$
11)

Length $=\sqrt{3^{2}+4^{2}}$
Length $=\sqrt{25}$
Length $=5$
12) Diagonal distance $=721 \mathrm{~m}$

